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2024 updates: Conditions for discussing collective effects in SuperKEKB

Breakthroughs in machine operation: Injection BG effects on lum. measurement removed (thanks to Belle || team);

Single-beam emittance €y<20 pm (Talks by Y. Ohnishi and H. Sugimoto); FB noises significantly suppressed (Talk by G.

Mitsuka); Impedance reduction by NLC installed in LER (Talk by S. Terui); Orbit control around CW sextupoles (Talk by Y.
Ohnishi); Both LER and HER can operate around design working point (.53, .57) (Talk by Y .Ohnishi).
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Collective instability mechanisms over the years [1] interactior

* 1960 resistive wall instability

* 1969 head-tail instabillity

* 1969 microwave instability

e 1971 beam-beam limit in colliders

1971 potential well distortion

* 1980 transverse mode coupling instability

* 1990 coherent synchrotron radiation instability

* 19906 electron beam-ion instability

1997 electron cloud instability

e 2013 interplay of multiple instability mechanisms
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Interplay (of multiple physics aspects) is the buzzword.
It essentially defines the luminosity performance of SuperKEKB [2].

[1] A. Chao, “Lectures on accelerator physics”, World Scientific, 2020. [2] D. Zhou et al., PRAB 26, 071001 (2023).



https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.071001

On beam dynamics

* “The beam dynamics is all contained in y.” (P. 196, [1])

« Beam-beam and its interplay with other physics
aspects

- For crab-waist colliders, beam-beam couples with other
nonlinear problems.

- The key is looking at mv, + nv, + kv, = N, considering the

tunes as functions of many variables

K K
in,yi,si(lbi9 Ibi’ in,yi,zi? xt,y+’ PxF,y+° €x¢,y¢’ s ) due to

multiple beam physics aspects.
- For coherent instabilities, one should look at coherent tunes.

- For incoherent (weak-strong) effects, one should look at
iIncoherent tunes.

 SuperKEKB is comprehensible

- At SuperKEKB, multiple dynamics and hardware problems
couple with each other.

- The key is to decouple (solve) the problems one by one.

Luminosity of crab-waist colliders [3]

[1] A. Chao, “Lectures on accelerator physics”, World Scientific, 2020. [2] D. Zhou et al., PRAB 26, 071001 (2023).

[3] D. Shatilov and A. Valishev, Sec. 4.11.1 of “Handbook of Accelerator Physics and Engineering”, World Scientific, 2023.
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MAC comments

ITF activities on collective effects

Potential well distortion and microwave instability

Transverse modeling coupling instability and “-1 mode instability”

Resistive wall instabillity
Electron cloud

IR nonlinearity

Combined effects of beam-beam and impedances

- Coherent X-Z instability
- Synchrobetatron resonances

- Beam-beam mode coupling

Recent beam-beam machine studies

Perspective on 1E35 luminosity

Only luminosity is of concern, impact of collective effects
on beam lifetime, injection, and detector background
IS also important, but not covered in this talk.




MAC comments

20. Beam-Beam Experiment and Simulations

Findings & comments:

SuperKEKB operates with the nanobeam plus crab-waist scheme, with a large Piwinski angle.
Vertical emittance is critical. At the time of the luminosity record, the vertical emittances were of
order 50-60 pm, still much larger than design. After tuning of the bunch-by-bunch feedback the
agreement of simulations and measurements has much improved. Actual specific luminosity is
some 5%-50% worse than predicted by simulations, perhaps due to insufficient tuning during the
high bunch current machine study, but the almost constant value of the specific luminosity towards
high bunch-current products is consistent with expectation. The measured specific luminosity
does not seem to depend on the number of bunches. There is no evidence that SuperKEKB has
already reached the beam-beam limit. In machine studies with fewer bunches, vertical beam-
beam tune shifts of 0.056 and 0.043 could be achieved. A correlation between top-up injection
and specific luminosity was observed. The LER injection kicker contributed to ~3% of luminosity
loss.

Multi-physics beam-beam simulation code development including the nonlinear lattice, space
charge, and impedance effects, etc., is proceeding at KEK. Similar complementary efforts are
underway in Europe, China and the US.

A path to the design luminosity was outlined, with 3.3 times smaller B,’, 2.5 times higher beam-
beam tune shift, and 2.5 times higher LER beam current.

A significant IR upgrade is required to achieve 0.3 mm B,. The IR upgrade should avoid
overlapping solenoid and quadrupole fields. It could, e.g., be based on CCT magnet technology.

Recommendations:

R20.1: Develop a concrete IR upgrade proposal and demonstrate the expected performance gain
through comprehensive simulations including beam-beam, nonlinear lattice, and impedance.

Response:

* On “IR upgrade proposal”, see M.
Masuzawa’s talk to this meeting.

* On “comprehensive simulations”:

- K. Ohmi’s STCR-CUDA and Z. Li’'s APES-
T (IHEP) are ready for strong-strong (PIC)
simulations with full lattices (KEK-IHEP
collaboration). Further efforts wished: 1)
Simplified SuperKEKB lattices to speed
up lattice trackings; 2) GPU parallel
computers to be managed.

- Xsuite (CERN, P. Kicsiny, X. Buffat, et al.)
has been applied to SuperKEKB (beam-
beam + impedances, KEK-CERN
collaboration) with support of EAJADE
program. Further efforts wished: 1)
Modeling SuperKEKB lattices in Xsuite. 2)

- Overview of collective effects (this talk).




ITF activities on collective effects [1]

e 2021-2022 (chair: M. Masuzawa)

 TMCI ITF subgroup, led by T. Ishibashi and M. Migliorati

- Achievements: Detailed impedance database constructed [2], “-1 mode instability” identified to be an interplay of vertical
impedance effect and BxB feedback system, accurate predictions of impedance-driven tune shifts, ...

 Beam-beam ITF subgroup, led by D. Zhou and K. Ohmi
- Achievements: Comprehension of beam-beam effects in SuperKEKB, effective international collaborations (KEK/IHEP/CERN), ...

e 2023- (chair: Y. Ohnishi [3])

* (Collective effects ITF subgroup, led by G. Mitsuka, T. Ishibashi, M. Migliorati, N. Wang, D. Zhou.

- Achievements on impedance effects: Detailed impedance modeling w/o and w/ NLC, predictions of impedance effects,
investigations of impedance measurements (streak camera, BPM, etc.), machine study planning, ...

- Achievements on beam-beam effects: Detailed theory/simulation investigations followed by publishing series of papers (K. Ohmi
served as a leading role), machine studies, ...

 |R-Upgrade ITF subgroup, led by D. Zhou and X. Wang
- This IR-Upgrade ITF subgroup investigates IR upgrade in 2030s, not LS2 (see [4] for IR upgrade during LS2)
- Achievements: Comprehension of IR complexity, challenges in IR upgrade, ...

[1] https://kds.kek.jp/category/2242/. [2] https://kds.kek.jp/event/40318/. [3] Y. Ohnishi, “ITF”, Talk to this meeting. [4] M. Masuzawa, “LS2”, Talk to this meeting.



Potential well distortion and microwave instability

e Since 2021, T. Ishibashi has been serving as “impedance manager” for SuperKEKB

- Reliable impedance models (reproducing measure tune shifts very well, though plausible discrepancy in
predicting measured bunch lengthening) have been constructed and applied to simulations

* Impedance modeling: SuperKEKB LER as an example
- Geometric wakes by GdfidL, CST, and ECHOSD [1]; RW by IW2D [1]; CSR/CWR by CSRZ
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[1] T. Ishibashi et al. 2024 JINST 19 P02013.



Potential well distortion and microwave instability

* Jo bridge the gap between computations
and beam-based measurements

- Theories of potential-well bunch lengthening and
phase shift revisited [1]

- Continuous efforts on searching for overlooked
impedance sources [2]

- Continuous efforts on examining systematic errors
in streak camera measurements [3]

* |n general, the computation-experiment
gap became significantly smaller
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[1] D. Zhou et al., NIM-A 1063 (2024) 169243. [2] T. Ishibashi et al 2024 JINST 19 P02013.

[3] G. Mitsuka, https://kds.kek.jp/event/46959/.
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Potential well distortion and microwave instability

SuperKEKB LER

- VFP simulations: Different combinations of impedance sources show
that CSR-driven MWI threshold is around 1.2 mA (< design value of
1.44 mA)

- Consistent with prediction of CSR instability theory [1,2]: CSR threshold
IS Independent of bending radius of dipoles

- CSR instabillity is not verified by experiments yet
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[1]Y. Cai, IPAC2011, FRXAAO1. [2] A. Blednykh, D. Zhou et al., PRAB 26, 051002 (2023).

[3] T. Ishibashi et al. 2024 JINST 19 P02013.
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Fractional vertical tune

Transverse modeling coupling instability and “-1 mode instability”

e TMCI in LER [1]
- Tune shift and TMCI simulated by PyHEADTAIL (T. Ishibashi and M. Migliorati)

- With machine configurations of ﬂ;kﬂ mm: Simulations using impedance models well reproduced the measured
tune shifts. Simulated TMCI threshold is 1.8 mA.

¢ B, =8mm, 2021-10-26
—— fit: y = (-6.97e-03)x + (0.608)
4 B, =1mm, 2021-12-22
—— fit: y = (-9.74e-03)x + (0.598)
-® - pyHT simulation
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[1] T. Ishibashi et al. 2024 JINST 19 P02013.
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Transverse modeling coupling instability and “-1 mode instability”

e TMCI in HER [1]
- Tune shift and TMCI simulated by PyHEADTAIL (T. Ishibashi and M. Migliorati)

- With machine configurations of ,B;‘<:1 mm: Simulations using impedance models well reproduced the measured
tune shifts. Simulated TMCI threshold is 3.5 mA.
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[1] T. Ishibashi et al. 2024 JINST 19 P02013.



Transverse modeling coupling instability and “-1 mode instability”

« “-1 mode instability” in LER [1,2,3,4]

- Observed instability threshold is significantly lower than TMCI threshold. Both vertical impedance effects (tune shift in 0 mode, dyy/ dl~-0.01/mA)
and bunch-by-bunch (BxB) feedback (FB) (excitation of -1 mode) play important roles in this phenomenon.

- Simulations using PYHEADTAIL consider resistive damper and show ITSR (Imaginary Tune Split and Repulsion) instability [5]. Simulations by K. Ohmi
consider multi-tap scheme of BxB FB and show that BxB FB can reactively drive -1 mode [2]. However, FB gain much higher than operation setting is
required to reproduce the observed instability [2].

- Countermeasure: Noise suppression and fine tuning of FB system (see [6] for details). Another countermeasure (proposal): The “easiest” way to
escape from this instability is increasing v, of LER.

¥ Byikyi =49.5E15 VIC , v,=0.6067

2022 [3]
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FIG. 9. Results of the FFT analysis of vertical beam motion data
collected using the LER BOR.

[1] T. Ishibashi et al. 2024 JINST 19 P02013. [2] K. Ohmi et al., eeFACT2022, WEXAT0102. [3] S. Terui, “Collimator challenges at SuperKEKB and their countermeasures using nonlinear
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FIG. 10. The vertical beam emittance versus bunch current with 8, =
| mm, before (green diamonds) and after (black circles) the event of
collimator jaw damage with BxB feedback on. The data of purple
triangles show the measurement with BxB feedback off.

Courtesy of S. Terui
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collimator”, submitted to PRAB. [4] S. Terui, Talk to this meeting. [5] E. Metral and M. Migliorati, Phys. Rev. Accel. Beams 23 (2020) 071001. [6] G. Mitsuka, talk to this meeting
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Resistive wall instability

* Transverse coupled-bunch instability driven by low-frequency resistive wall impedance [1,2]

- For SuperKEKB LER, by theory (counting RW impedances of normal chambers, IR chamber and collimators) the

growth time is TyTheory:1 .0 ms at /,,,,,=600 mA; by experiment, it is TyExP:S.B ms.

- For SuperKEKB HER, by theory (counting RW impedances of normal chambers, IR chamber and collimators) the

growth time is TyT heory-0.5 ms at I,,, =600 mA; by experiment, it is TyExP =1.6 ms.
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Figure 2: Evolution of vertical unstable modes with by-3.06 Current(mA) Figure 6: Evolution of vertical unstable modes with by-3.06
fill pattern in HER at a beam current of 600 mA (Jun. 29,  Figure 3: Measured growth rates as a function of beam fill pattern in LER at a beam current of 600 mA (Mar. 28,
2021). current in HER (Jun. 29, 2021). The red circles and blue 2022).
squares indicate measured results with By=8 and 1 mm,
respectively.

[1] D. Zhou et al., IPAC’23, WEPL187. [2] D. Zhou, Talk to mini-impedance workshop at KEK, 2022.



https://conference-indico.kek.jp/event/198/

Electron cloud

* Electron cloud in SuperKEKB LER [1]

- “No significant electron cloud effect has been observed in the LER after installing solenoids in drift spaces in
2017 which apply magnetic fields in the beam direction.”

FIG. 19. Typical views of countermeasures adopted to the
SuperKEKB LER: (a) beam pipes with antechambers, (b) TiN-
film coating, (c) clearing electrode, (d) groove structure, magnetic
fields in the beam direction by (e) permanent magnets and
(f) solenoids.
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TABLE II. Countermeasures used to minimize the ECE in the SuperKEKB LER. The circular dots indicate the countermeasures
applied for cach main section in the ring.
Countermeasures
Length n, (circular) Antechamber TiN coating Solenoid Groove  Electrode n, (expected
Sections (m) (m=) (1/5) (3/5) (B.:1/50)" (1/2) (1/100) m)
Drift space (arc) 1629 8 x 1012 . ° o 2 x 1019
Corrector magnets 316 810 ° o . . 210
Bending magnets 519 1 x 10" . . . 6 x 10"
Wiggler magnets 154 4 x 1012 . o . 5x 10°
Quadrupole and 254 4 x 10" _ . 5 x 10°
Sextupole magnets
rf cavity section 124 110 . . 1 x 10°
IR 20 5x 10" . . 6 x 10°
Total 3016
Average 5.5 x 1012 2.4 x 1010
200 200 200
(a) Before attaching magnets to ECK Off (b) Affter attaching magnets to ECK Off C) After applying axial magnetic field  ECK Off 1 (d) Phase-3 2019 Spring run ECK Off
Al-alloy bellows chambers Al-alloy bellows chambers to beam pipes at drift spaces 2019/6/29
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FIG. 20. Vertical beam sizes as a function of the current line density (/) for several bunch filling patterns measured (a) before and
(b) after attaching PM units to Al-alloy bellows chambers in Phase-1 commissioning, (¢) Phase-2 commissioning, and (d) Phase-3
commissioning.
[1] Y. Suetsugu et al., “SuperKEKB vacuum system operation in the last 6 years operation”, PRAB 26, 013201 (2023).
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IR nonlinearity: converged understandings

Complicated interaction region (IR) [1]

SuperKEKB Interactlon Reglon (IR)
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IR nonlinearity: converged understandings

 Complicated interaction region (IR) [1]

- Large crossing angle (required by collision scheme) and limited spaces for hardwares increase the complexity of
optics.
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[1] Y. Arimoto, “Current QCS magnet system”.
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IR nonlinearity: converged understandings

 Complicated interaction region (IR): Side effects from beam physics viewpoint

- Extremely smal ,B;k — Nonlinear effects from kinematic term of IP drift and fringe fields of final focus (FF)

quadrupoles [1] = Fundamental limit on dynamic aperture and lifetime [1,2,3] — Poor injection efficiency [4] and
high detector background [3].

- Overlap of solenoid and FF quadrupoles, offsets of FF quadrupoles, etc. — Vertical emittance growth (single-beam)
due to local linear and chromatic couplings [6] — Vertical emittance growth (two-beam) from interplay of beam-beam
and lattice nonlinearity [7,8] — Imperfect crab waist due to nontransparent IR [2].

Orbit in the vicinity of IP
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[1] K. Oide and H. Koiso, Phys. Rev. E 47, 2010 (1993). [2] SuperKEKB TDR. [3] Y. Suetsugu, et al., PRAB 26, 013201 (2023). [5] A. Natochii, et al., “Beam background expectations for Belle Il at SuperKEKB”.

[6] M. Masuzawa, IPAC’22. [7] D. Zhou et al., “Beam Dynamics Issues in the SuperKEKB”. [8] K. Hirosawa et al., J. Phys.: Conf. Ser. 1067 062004 (2018).
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IR nonlinearity: converged understandings

* Implementation of crab waist at SuperKEKB

- Crab waist [1] was optional in SuperKEKB final design, because it significantly reduces dynamic aperture and lifetime
(from optics design with a realistic IR) [2].

- Beam commissioning experienced severe emittance blowup and poor luminosity, forcing implementation of crab
waist (Oide’s scheme [3]).

- Crab waist is efficient in suppressing beam-beam blowup (at high bunch currents), but cause significant loss of
dynamic aperture and lifetime at SuperKEKB with ,B;k=1 mm [4]. Careful machine tunings might be necessary to
improve the efficiency of CW (this talk).
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[1] M. Zobov et al., Phys. Rev. Lett. 104, 174801 (2010). [2] SuperKEKB TDR. [3] K. Oide et al.,

Phys. Rev. Accel. Beams 19, 111005 (2016). [4] Y. Ohnishi,

a0

Dynamic Aperture for Crab Waist in LER”. 19


https://kds.kek.jp/event/15914/
https://kds.kek.jp/event/46234/

IR nonlinearity: converged understandings

* High detector background

- The short lifetime and poor injection efficiency cause high background to Belle Il [1,2], requiring tight configurations of
collimation system [3].

- Small-gap collimators contribute large impedance (especially after head damages) and caused vertical emittance
blowup (“noise” in bunch-by-bunch feedback, interplay with beam-beam, etc.) [4].
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[1] A. Natochii, et al., “Beam background expectations for Belle |l at SuperKEKB”. [2] A. Natochii et al., PRAB 24, 081001 (2021).
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Beam-beam related topics in crab-waist colliders

« Mechanisms of pure beam-beam effects

» Horizontal: (coherent two-beam) X-Z instability [Ohmi 2017 (PRL), Kuroo 2018 (PRAB)] and (single-beam)
synchrobetatron resonances [Zhou 2023 (PRAB)]

> Vertical: Nonlinear X-Y resonances [Ohmi 2004 (PRST-AB), Ohmi 2007 (PRST-AB), Zobov 2010 (PRL)]

 Mechanisms of interplay between beam-beam and impedances

» Horizontal: modified X-Z instability [Lin 2022 (PRAB), Zhang 2020 (PRAB), Migliorati 2021 (EPJP)] (key issue: potential
distortion and synchrotron tune spread due to impedance)

> Vertical: TMCI-like head-tail instability [White 2024 (PRAB), Zhang 2023 (PRAB), Zhou 2023 (PRAB), Ohmi 2023
(PRAB)] (key issues: spread of synchrotron and vertical betatron tunes due to impedance)

 Mechanism of interplay between beam-beam and other problems (Zhou 2023 (PRAB))
> BxB feedback: “-1 mode instability” [Ohmi 2022 (eeFACT), Ishibashi 2023 (JINST)]
> Linear IP X-Y couplings [Ohmi 2018 (eeFACT)]
> Chromatic IP X-Y couplings [Zhou 2009 (PRST-AB)]
> Nonlinear IP X-Y couplings [Zhou 2015 (ICFA BDN)
> Non-perfect crab waist [To be investigated]

The recent papers of K. Ohmi, Y. Zhang et al. showcase full collaborations.
More papers triggered by collaborations on SuperKEKB are expected.
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Combined effects of beam-beam and impedances

« Simulated v,-dependent horizontal instability in SuperKEKB

- Strong coherent X-Z instability around resonance v, — kI/S(JZ) = N/2 and weak blowup due to synchrobetatron (SB) resonances [1]
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Combined effects of beam-beam and impedances

Simulated v -dependent horizontal instability in SuperKEKB

- Beam-beam driven SB resonances have been investigated since 1970s.

- Investigations are ongoing to study the SB resonances in the presence of impedance effects [1, 2].
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Combined effects of beam-beam and impedances

 Simulated vertical TMCI-like instability in SuperKEKB

- First found by K. Ohmi in simulations, followed by detailed investigations [1,2,3].

- Beam-beam mode coupling theory reproduces the results of the beam-beam simulation [3].
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FIG. 14. Specific luminosity predicted by BBSS simulations with
the inclusion of longitudinal impedances of both HER and LER and
transverse impedance of only LER. Simulations were done by
scanning the vertical tune of LER and varying the two beams’
bunch currents. Other beam parameters are frozen the same as April
5,2022, of Table Il except thate,_/e,, = 35/20 pm (single-beam
emittances observed on December 21, 2021).
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Recent beam-beam machine studies
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Recent beam-beam machine studies

« HBCC studies compared
- w/ CW, 2024.03.22
- w/ CW, 2024.03.21
- w/o CW, 2024.03.12
- w/ CW, 2022.04.05

Better geometric luminosity in 2024a
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Crab waist is a MUST
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Vertical blowup is complicated

Multiple factors to be identified o6

HER emittance knobs used to achieve balanced collision



Recent beam-beam machine studies

LER vertical tune scan compared E =
BE=1 mm, w/o CW, 2024.03.12 oo

- ;k:‘l mm, w/ CW, 2024.03.22
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Recent beam-beam machine studies

| ER horizontal tune scan compared
p;¥=8 mm, w/o CW, 2024.02.26
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Perspective on 1E35 luminosity

 1E35 luminosity is achievable, if crab waist works well. Factors affecting luminosity:
- (1) Bunch lengthening and synchrotron tune spread caused by longitudinal impedance — Unavoidable

2) Beam-beam-driven fifth-order betatron resonances v, £ 4(v, + £ ) = N — Cured by crab waist
X y T %y

(2)
- (3) Vertical TMCI-like instability driven by the interplay of beam-beam and vertical impedance [1,2]
- (4) Dynamic beta and dynamic emittance caused by linear transverse beam-beam force (,B;X< \| , €, ya fgh'jzlgdp:; 20z4a run.
y
- (5) Crab waist (CW) suppresses the fifth-order beam-beam resonances *|v,4]=0.57
19 post-LS1 1E35 Commants
- | | ' | HER LER
', =0.89 mA
11} 06 : touncn (mA) YR 0.89
N  Lp— — V. mA :
< ol (1)&(4) : ) # bunch 2345 2022a operation value
E - > £x (Nm) 4.6 4.0 w/o IBS
L9 . ] €y (pm) 30 30 Single-beam emittance
g 8 (2)&(5); s ] Bx (mMm) 60 60 Lattice design value
50 - . ) By (mm) 0.8 0.8 Lattice design value
= , 020 (MM) 5.1 4.6 Natural bunch length (w/o MWI)
E 6 : — 45532 | 44.524 2022a operation value
_Tl_g St E - 43.574 46.589 2022a operation value
9 4l . ] 0.0272 0.0222 Calculated from lattice
S BBSS simulatign w/ Zxyz w/ CW (HER:50%, LER:50%) —+—
N BBSS simulati®n w/ Zxyz w/ CW (HER:60%, LER:60%) Tx,y (MS) 58.0 53.1 Transverse damping time (w/ NLC)
31 BBSS simulatign w/ Zxyz w/ CW (HER:70%, LER:70%) —s— . : . :
5 ~ BBSS simulatien w/ Zxyz w/ CW (HER:80%, LER:80%) —#&— Tz (MS) 29.0 26.6 Longitudinal damping time
0 02 04 06 0.8 1 12 14 1.6 Crab waist 80% 80% Lattice design

+ - 2
lounch(® Xlpuncn(e ) [MAT] [1] Y. Zhang et al., PRAB 26, 064401 (2023); K. Ohmi et al., PRAB 26, 111001 (2023). 29



SuperKEKB as a demonstrator of crab-waist colliders:

* After years of investigation, SuperKEKB has become comprehensible from the perspective of collective effects.
* Collaborations within the collider community have accelerated the learning curve of understanding collective effects.
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WISHLIST

 Send young accelerator physicists (domestic and international) to SuperKEKB
« EAJADE project is excellent
* Manage GPU computers for strong-strong (PIC) simulations with full lattices
* A model including everything has been a dream 30 years ago, but feasible now
 Beam time for machine studies
 Experiments tell more than theories and simulations (?)
* Plan nonlinear optics tunings/optimizations (see H. Sugimoto’s talk to this meeting)

* The crab waist concept: brilliant, yet challenging (see crab cavity experience in KEKB)

* Al/ML techniques have become trendy K, Bs
| | | | Hew = —— B3 B5 | =X cos Ay, sin® Ayyryx™ pt?
* Plan NLC studies (See S. Terui’s talk to this meeting) 2 b3

: Y. Ohnishi, EPJP 136:1023 (2021
 Less BG and impedances fash 2021

 Think of global parameter optimizations, such as increasing v, of LER

* Big ideas are written in the Handbook, though requires lots of R&D work
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WISHLIST

2013

Handbook of

Accelerator Physics
"' Kngineering

Second Edition

Inted by

Alexander Wu Chao
Karl Hubert Mess

Maury Tigner
Frank Zimmermann

2023

]
kﬁ
‘\\:\'\b
“>|“T\\

Handbook of
Accelerator Physics
and Engineering

Many exciting updates relevant
to crab-waist colliders!

FranK Zimmermann

—
Edited by
. Alexander Wu Chao
To Frank: Send a few copies to Maury Tigner
SuperKEKB control room? o Aot
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Status and activities of ITF-BB sub-group and ITF-IR sub-group

« Beam-beam sub-group

Re-organized under the collective effects sub-group.
Two ITF-BB meetings organized: Feb. 7, 2023 [1]; Jul. 1, 2023 [2].
More activities under private collaboration mode (to be reviewed in this talk).

Presentations

K. Ohmi, “SCTR-CUDA” [1].

D. Shatilov, “Computation of Complex Error Function, comparison of accuracy and speed” [1].
K. Ohmi, “Beam-beam mode coupling” [2].

D. Zhou, “Beam-beam simulations for post-LS1 target luminosity 1E35” [2].

* |R upgrade sub-group

Focus on investigations of “Much Larger scale modification” of SuperKEKB IR in 2030s [3].
Should not be confused with the existing IR upgrade team (investigating “Moderate scale modification around 2027” and “Larger scale modification” [3]).
Five ITF-IR meetings organized: Feb. 17, 2023 [3]; Mar. 7, 2023 [4]; Mar. 28, 2023 [5]; Apr. 18, 2023 [6]; May. 23, 2023 [7].
Presentations

Y. Ohnishi, “Opening remark” [3].

K. Shibata, “Overview of SuperKEKB IR” [3].

D. Zhou, “Discussions on tasks/goals of ITF-IR subgroup in 2023” [3].

M. Koratzinos, “A proposal for the upgrade of the final focus system of SuperKEKb” [4].

P. Raimondi, “Final Focus beam dynamics studies” [4].

Y. Arimoto, “Current QCS magnet system” [5].

D. Zhou, “Constraints on investigations of SuperKEKB IR-Upgrade under the ITF-IR framework” [5].
A. Natochii, “Beam-induced background status and expectation in Belle II” [6].

Y. Ohnishi, “Dynamic Aperture for Crab Waist in LER” [6].

F. Forti, “Comments on detector constraints on IR design” [7].

D. Zhou, “Tentative parameter table for post-LS2 SuperKEKB and strategy for ITF-IR workgroup” [7].

nttps://
nttps://
Nttps://
nttps://
nttps://
Nttps://
nttps://

N o o 0N =

Kds.
Kds.
Kds.
Kds.
Kds.
Kds.

Kds.

Ke
KE
Ke
Ke
KE
Ke

Ke

A A A A A A A

Jp/event/45407/.
Jjp/event/46663/
Jjp/event/45534/.
Jjp/event/45877/.
Jjp/event/46026/.
Jjp/event/46234/.
Jp/event/46574/.

Mainly understanding the
challenges in IR.

So far, no activities of IR
optics design for upgrade.
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Crab waist applied to SuperKEKB

» SuperKEKB final design (65 = 0.3/0.27 mm) with ideal crab waist

* Tune scans using BBWS

 (Crab waist creates large area in tune space for choice of working point
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>
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c
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| J 1.0e+35
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7.0e+35
6.0e+35
5.0e+35
4.0e+35
3.0e+35
2.0e+35
1.0e+35

0.0e+00
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Crab waist applied to SuperKEKB

» SuperKEKB 2021b run (6 = 1 mm) with ideal crab waist

- Tune scan using BBWS showed that 80% crab waist ratio in LER is
effective in suppressing vertical blowup caused by beam-beam

resonances (mainly v, 41/y + a = N).

2021.07.01
HER LER

lbunch (mA)

Comments

# bunch

Assumed value

Ex (nm) 4.6 4.0

w/ IBS

gy (pm) 23 23

Estimated from XRM data

Calculated from lattice

By (mm) I I

Calculated from lattice

0z0 (MmM) 5.05 4.84

Natural bunch length (w/o MWI)

45.532 | 44.525

Measured tune of pilot bunch

43.582 | 46.593

Measured tune of pilot bunch

0.0272 | 0.0221

Calculated from lattice

Crab waist 40% 80%

Lattice design

Lum. w/o crab waist in LER
5 1.0e+35
I 9.0e+34
—— 8.0e+34

—— 7.0e+34

Fractional vy

6.0e+34

05 055 06 065 0.7 0.75
Fractional v

Lum. w/ 80% crab waist in LER
0.75 pg —— —> mm 1.0e+35
: : I 9.0e+34

8.0e+34

7.0e+34

Fractional vy

6.0e+34

05 055 06 065 0.7
Fractional v
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Crab waist applied to SuperKEKB

o SuperKEKB 2021b run

% _
) 1 mm

) with ideal crab waist

- Tune scan using BBWS showed that 40% crab waist ratio (current
operation condition) in HER is not enough for suppressing vertical
blowup caused by beam-beam resonances (mainly

v, t4dv, +a=N).

Lum. w/ 80% crab wa

0.75

Fractional vy
O
(@)

0.55

ist in HER

1.0e+35

9.0e+34

= | 806434

—— 7.0e+34

6.0e+34

0.5 0.55

065 0.7 0.75
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Lum. w/o crab waist in HER
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Beam-beam viewpoints on achieving higher luminosity

. Assume balanced c:ollision:,ﬁ;’jr = f* = [* €

y— — Py Eyp —

€, = €, and the hourglass effect is not

Y Y

strong, we can look into the formula of beam-beam parameter and discuss the challenges
* Note that we have to respect the constraints of real machines.

Beam-beam limit requires:

£, < 0.1

To keep ¢, < 0.1, higher
currents requires smaller ff

If we must accept fy < 0.1, then
smaller ﬂ;k is always preferred

—Hé’? """ | VR
2refoy+ tan —ggazw_hg\ €y

Crossing angle:

1) IR layout (constraints from
optics design)

2) Reducing 6. does not create
a gain of luminosity if there the
beam-beam limit exists.

Impedance effects
Longer o, can be beneficial

5 We achieved €, < 20 pm

\ &y < 0.1 sets a lower limit on the
achievable €, (at a given fT).

It is not feasible to achieve €, & 10 pm

at py = 1 mm
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Beam-beam viewpoints on achieving higher luminosity

o Specific luminosity only depends on the geometric parameters (beam sizes and crossing angle).

We achieved ~11 x 10°! cm=2s=1mA=2 with £ = 1 mm
The baseline design is ~21 X 10°! cm—2s—1mA~2

The fundamental limit lies in vertical beam sizes
Challenges: High currents, beam-beam, crab waist, lattice
imperfections, ...

Impedance effects
modify the synchrotron motion,
indirectly playing a role in many issues
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